Predicting Tropical Dry Forest Successional Attributes from Space: Is the Key Hidden in Image Texture?
نویسندگان
چکیده
Biodiversity conservation and ecosystem-service provision will increasingly depend on the existence of secondary vegetation. Our success in achieving these goals will be determined by our ability to accurately estimate the structure and diversity of such communities at broad geographic scales. We examined whether the texture (the spatial variation of the image elements) of very high-resolution satellite imagery can be used for this purpose. In 14 fallows of different ages and one mature forest stand in a seasonally dry tropical forest landscape, we estimated basal area, canopy cover, stem density, species richness, Shannon index, Simpson index, and canopy height. The first six attributes were also estimated for a subset comprising the tallest plants. We calculated 40 texture variables based on the red and the near infrared bands, and EVI and NDVI, and selected the best-fit linear models describing each vegetation attribute based on them. Basal area (R(2) = 0.93), vegetation height and cover (0.89), species richness (0.87), and stand age (0.85) were the best-described attributes by two-variable models. Cross validation showed that these models had a high predictive power, and most estimated vegetation attributes were highly accurate. The success of this simple method (a single image was used and the models were linear and included very few variables) rests on the principle that image texture reflects the internal heterogeneity of successional vegetation at the proper scale. The vegetation attributes best predicted by texture are relevant in the face of two of the gravest threats to biosphere integrity: climate change and biodiversity loss. By providing reliable basal area and fallow-age estimates, image-texture analysis allows for the assessment of carbon sequestration and diversity loss rates. New and exciting research avenues open by simplifying the analysis of the extent and complexity of successional vegetation through the spatial variation of its spectral information.
منابع مشابه
Evaluating Sentinel-2 and Landsat-8 Data to Map Sucessional Forest Stages in a Subtropical Forest in Southern Brazil
Studies designed to discriminate different successional forest stages play a strategic role in forest management, forest policy and environmental conservation in tropical environments. The discrimination of different successional forest stages is still a challenge due to the spectral similarity among the concerned classes. Considering this, the objective of this paper was to investigate the per...
متن کاملQuantifying Tropical Dry Forest Type and Succession: Substantial Improvement withLiDAR
Improved technologies are needed to advance our knowledge of the biophysical and human factors influencing tropical dry forests, one of the world’s most threatened ecosystems. We evaluated the use of light detection and ranging (LiDAR) data to address two major needs in remote sensing of tropical dry forests, i.e., classification of forest types and delineation of forest successional status. We...
متن کاملLocal and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests
Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological ser...
متن کاملFunctional Diversity of Small and Large Trees along Secondary Succession in a Tropical Dry Forest
Functional Diversity is considered an important driver of community assembly in environmental and successional gradients. To understand tree assembly processes in a semideciduous tropical forest, we analyzed the variation of Functional Richness (FRic), Functional Divergence (FDiv), and Functional Evenness (FEve) of small vs. large trees in relation to fallow age after slash-and-burn agriculture...
متن کاملPredicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images
Predicting structural organization and biomass of tropical forest from remote sensing observation constitutes a great challenge. We assessed the potential of Fourier-based textural ordination (FOTO) to estimate mangrove forest biomass from very high resolution (VHR) IKONOS images. The FOTO method computes texture indices of canopy grain by performing a standardized principal component analysis ...
متن کامل